

1

Table of Contents
Preface

Introduction to Linux and shells

man

ls

cd

pwd

mkdir

rmdir

mv

cp

open

touch

find

ln

gzip

gunzip

tar

alias

cat

less

tail

wc

grep

sort

2

uniq

diff

echo

chown

chmod

umask

du

df

basename

dirname

ps

top

kill

killall

jobs

bg

fg

type

which

nohup

xargs

vim

emacs

nano

whoami

who

su

sudo

3

passwd

ping

traceroute

clear

history

export

crontab

uname

env

printenv

Conclusion

4

Preface
The Linux Commands Handbook follows the 80/20
rule: learn in 20% of the time the 80% of a topic.

I find this approach gives a well-rounded overview.

This book does not try to cover everything under the
sun related to Linux and its commands. It focuses on
the small core commands that you will use the 80% or
90% of the time, trying to simplify the usage of the
more complex ones.

All those commands work on Linux, macOS, WSL,
and anywhere you have a UNIX environment.

I hope the contents of this book will help you achieve
what you want: get comfortable with Linux.

This book is written by Flavio. I publish
programming tutorials every day on my website
flaviocopes.com.

You can reach me on Twitter @flaviocopes.

Enjoy!

5

Introduction to Linux and
shells
Linux is an operating system, like macOS or Windows.

It is also the most popular Open Source and free, as in
freedom, operating system.

It powers the vast majority of the servers that
compose the Internet. It's the base upon which
everything is built upon. But not just that. Android is
based on (a modified version of) Linux.

The Linux "core" (called kernel) was born in 1991 in
Finland, and it went a really long way from its humble
beginnings. It went on to be the kernel of the GNU
Operating System, creating the duo GNU/Linux.

There's one thing about Linux that corporations like
Microsoft and Apple, or Google, will never be able to
offer: the freedom to do whatever you want with your
computer.

They're actually going in the opposite direction,
building walled gardens, especially on the mobile side.

Linux is the ultimate freedom.

It is developed by volunteers, some paid by
companies that rely on it, some independently, but
there's no single commercial company that can dictate
what goes into Linux, or the project priorities.

6

Linux can also be used as your day to day computer. I
use macOS because I really enjoy the applications,
the design and I also used to be an iOS and Mac apps
developer, but before using it I used Linux as my main
computer Operating System.

No one can dictate which apps you can run, or "call
home" with apps that track you, your position, and
more.

Linux is also special because there's not just "one
Linux", like it happens on Windows or macOS.
Instead, we have distributions.

A "distro" is made by a company or organization and
packages the Linux core with additional programs and
tooling.

For example you have Debian, Red Hat, and Ubuntu,
probably the most popular.

Many, many more exist. You can create your own
distribution, too. But most likely you'll use a popular
one, one that has lots of users and a community of
people around it, so you can do what you need to do
without losing too much time reinventing the wheel
and figuring out answers to common problems.

Some desktop computers and laptops ship with Linux
preinstalled. Or you can install it on your Windows-
based computer, or on a Mac.

But you don't need to disrupt your existing computer
just to get an idea of how Linux works.

I don't have a Linux computer.

7

If you use a Mac you need to know that under the
hood macOS is a UNIX Operating System, and it
shares a lot of the same ideas and software that a
GNU/Linux system uses, because GNU/Linux is a free
alternative to UNIX.

UNIX is an umbrella term that groups many
operating systems used in big corporations and
institutions, starting from the 70's

The macOS terminal gives you access to the same
exact commands I'll describe in the rest of this
handbook.

Microsoft has an official Windows Subsystem for Linux
which you can (and should!) install on Windows. This
will give you the ability to run Linux in a very easy way
on your PC.

But the vast majority of the time you will run a Linux
computer in the cloud via a VPS (Virtual Private
Server) like DigitalOcean.

A shell is a command interpreter that exposes to the
user an interface to work with the underlying operating
system.

It allows you to execute operations using text and
commands, and it provides users advanced features
like being able to create scripts.

This is important: shells let you perform things in a
more optimized way than a GUI (Graphical User
Interface) could ever possibly let you do. Command
line tools can offer many different configuration options
without being too complex to use.

8

There are many different kind of shells. This post
focuses on Unix shells, the ones that you will find
commonly on Linux and macOS computers.

Many different kind of shells were created for those
systems over time, and a few of them dominate the
space: Bash, Csh, Zsh, Fish and many more!

All shells originate from the Bourne Shell, called sh .
"Bourne" because its creator was Steve Bourne.

Bash means Bourne-again shell. sh was proprietary
and not open source, and Bash was created in 1989
to create a free alternative for the GNU project and the
Free Software Foundation. Since projects had to pay
to use the Bourne shell, Bash became very popular.

If you use a Mac, try opening your Mac terminal. That
by default is running ZSH. (or, pre-Catalina, Bash)

You can set up your system to run any kind of shell,
for example I use the Fish shell.

Each single shell has its own unique features and
advanced usage, but they all share a common
functionality: they can let you execute programs, and
they can be programmed.

In the rest of this handbook we'll see in detail the most
common commands you will use.

9

man
The first command I want to introduce is a command
that will help you understand all the other commands.

Every time I don't know how to use a command, I type
 man <command> to get the manual:

This is a man (from manual) page. Man pages are an
essential tool to learn, as a developer. They contain so
much information that sometimes it's almost too much.

The above screenshot is just 1 of 14 screens of
explanation for the ls command.

Most of the times when I'm in need to learn a
command quickly I use this site called tldr pages:
https://tldr.sh/. It's a command you can install, then
you run it like this: tldr <command> , which gives you a
very quick overview of a command, with some handy
examples of common usage scenarios:

10

This is not a substitute for man , but a handy tool to
avoid losing yourself in the huge amount of
information present in a man page. Then you can use
the man page to explore all the different options and
parameters you can use on a command.

11

ls
Inside a folder you can list all the files that the folder
contains using the ls command:

ls

If you add a folder name or path, it will print that folder
contents:

ls /bin

 ls accepts a lot of options. One of my favorite
options combinations is -al . Try it:

ls -al /bin

12

compared to the plain ls , this returns much more
information.

You have, from left to right:

the file permissions (and if your system supports
ACLs, you get an ACL flag as well)
the number of links to that file
the owner of the file
the group of the file
the file size in bytes
the file modified datetime
the file name

This set of data is generated by the l option. The a
option instead also shows the hidden files.

Hidden files are files that start with a dot (.).

13

cd
Once you have a folder, you can move into it using the
 cd command. cd means change directory. You
invoke it specifying a folder to move into. You can
specify a folder name, or an entire path.

Example:

mkdir fruits
cd fruits

Now you are into the fruits folder.

You can use the .. special path to indicate the
parent folder:

cd .. #back to the home folder

The # character indicates the start of the comment,
which lasts for the entire line after it's found.

You can use it to form a path:

mkdir fruits
mkdir cars
cd fruits
cd ../cars

There is another special path indicator which is . ,
and indicates the current folder.

You can also use absolute paths, which start from the
root folder / :

14

cd /etc

This command works on Linux, macOS, WSL,
and anywhere you have a UNIX environment

15

pwd
Whenever you feel lost in the filesystem, call the pwd
command to know where you are:

pwd

It will print the current folder path.

16

mkdir
You create folders using the mkdir command:

mkdir fruits

You can create multiple folders with one command:

mkdir dogs cars

You can also create multiple nested folders by adding
the -p option:

mkdir -p fruits/apples

Options in UNIX commands commonly take this form.
You add them right after the command name, and they
change how the command behaves. You can often
combine multiple options, too.

You can find which options a command supports by
typing man <commandname> . Try now with man mkdir
for example (press the q key to esc the man page).
Man pages are the amazing built-in help for UNIX.

17

rmdir
Just as you can create a folder using mkdir , you can
delete a folder using rmdir :

mkdir fruits
rmdir fruits

You can also delete multiple folders at once:

mkdir fruits cars
rmdir fruits cars

The folder you delete must be empty.

To delete folders with files in them, we'll use the more
generic rm command which deletes files and folders,
using the -rf options:

rm -rf fruits cars

Be careful as this command does not ask for
confirmation and it will immediately remove anything
you ask it to remove.

There is no bin when removing files from the
command line, and recovering lost files can be hard.

18

mv
Once you have a file, you can move it around using
the mv command. You specify the file current path,
and its new path:

touch test
mv pear new_pear

The pear file is now moved to new_pear . This is how
you rename files and folders.

If the last parameter is a folder, the file located at the
first parameter path is going to be moved into that
folder. In this case, you can specify a list of files and
they will all be moved in the folder path identified by
the last parameter:

touch pear
touch apple
mkdir fruits
mv pear apple fruits #pear and apple moved to the fr

19

cp
You can copy a file using the cp command:

touch test
cp apple another_apple

To copy folders you need to add the -r option to
recursively copy the whole folder contents:

mkdir fruits
cp -r fruits cars

20

open
The open command lets you open a file using this
syntax:

open <filename>

You can also open a directory, which on macOS opens
the Finder app with the current directory open:

open <directory name>

I use it all the time to open the current directory:

open .

The special . symbol points to the current
directory, as .. points to the parent directory

The same command can also be be used to run an
application:

open <application name>

21

touch
You can create an empty file using the touch

command:

touch apple

If the file already exists, it opens the file in write mode,
and the timestamp of the file is updated.

22

find
The find command can be used to find files or
folders matching a particular search pattern. It
searches recursively.

Let's learn it by example.

Find all the files under the current tree that have the
 .js extension and print the relative path of each file
matching:

find . -name '*.js'

It's important to use quotes around special characters
like * to avoid the shell interpreting them.

Find directories under the current tree matching the
name "src":

find . -type d -name src

Use -type f to search only files, or -type l to only
search symbolic links.

 -name is case sensitive. use -iname to perform a
case-insensitive search.

You can search under multiple root trees:

find folder1 folder2 -name filename.txt

23

Find directories under the current tree matching the
name "node_modules" or 'public':

You can also exclude a path, using -not -path :

You can search files that have more than 100
characters (bytes) in them:

find . -type f -size +100c

Search files bigger than 100KB but smaller than 1MB:

find . -type f -size +100k -size -1M

Search files edited more than 3 days ago

find . -type f -mtime +3

Search files edited in the last 24 hours

find . -type f -mtime -1

You can delete all the files matching a search by
adding the -delete option. This deletes all the files
edited in the last 24 hours:

find . -type f -mtime -1 -delete

find . -type d -name node_modules -or -name public

find . -type d -name '*.md' -not -path 'node_modules

24

You can execute a command on each result of the
search. In this example we run cat to print the file
content:

find . -type f -exec cat {} \;

notice the terminating \; . {} is filled with the file
name at execution time.

25

ln
The ln command is part of the Linux file system
commands.

It's used to create links. What is a link? It's like a
pointer to another file. A file that points to another file.
You might be familiar with Windows shortcuts. They're
similar.

We have 2 types of links: hard links and soft links.

Hard links
Hard links are rarely used. They have a few
limitations: you can't link to directories, and you can't
link to external filesystems (disks).

A hard link is created using

ln <original> <link>

For example, say you have a file called recipes.txt.
You can create a hard link to it using:

ln recipes.txt newrecipes.txt

The new hard link you created is indistinguishable
from a regular file:

26

Now any time you edit any of those files, the content
will be updated for both.

If you delete the original file, the link will still contain
the original file content, as that's not removed until
there is one hard link pointing to it.

Soft links
Soft links are different. They are more powerful as you
can link to other filesystems and to directories, but
when the original is removed, the link will be broken.

You create soft links using the -s option of ln :

27

ln -s <original> <link>

For example, say you have a file called recipes.txt.
You can create a soft link to it using:

ln -s recipes.txt newrecipes.txt

In this case you can see there's a special l flag
when you list the file using ls -al , and the file name
has a @ at the end, and it's colored differently if you
have colors enabled:

Now if you delete the original file, the links will be
broken, and the shell will tell you "No such file or
directory" if you try to access it:

28

gzip
You can compress a file using the gzip compression
protocol named LZ77 using the gzip command.

Here's the simplest usage:

gzip filename

This will compress the file, and append a .gz

extension to it. The original file is deleted. To prevent
this, you can use the -c option and use output
redirection to write the output to the filename.gz file:

gzip -c filename > filename.gz

The -c option specifies that output will go to the
standard output stream, leaving the original file
intact

Or you can use the -k option:

gzip -k filename

There are various levels of compression. The more
the compression, the longer it will take to compress
(and decompress). Levels range from 1 (fastest, worst
compression) to 9 (slowest, better compression), and
the default is 6.

You can choose a specific level with the -<NUMBER>
option:

29

gzip -1 filename

You can compress multiple files by listing them:

gzip filename1 filename2

You can compress all the files in a directory,
recursively, using the -r option:

gzip -r a_folder

The -v option prints the compression percentage
information. Here's an example of it being used along
with the -k (keep) option:

 gzip can also be used to decompress a file, using
the -d option:

gzip -d filename.gz

30

gunzip
The gunzip command is basically equivalent to the
 gzip command, except the -d option is always
enabled by default.

The command can be invoked in this way:

gunzip filename.gz

This will gunzip and will remove the .gz extension,
putting the result in the filename file. If that file exists,
it will overwrite that.

You can extract to a different filename using output
redirection using the -c option:

gunzip -c filename.gz > anotherfilename

31

tar
The tar command is used to create an archive,
grouping multiple files in a single file.

Its name comes from the past and means tape
archive. Back when archives were stored on tapes.

This command creates an archive named
 archive.tar with the content of file1 and file2 :

tar -cf archive.tar file1 file2

The c option stands for create. The f option is
used to write to file the archive.

To extract files from an archive in the current folder,
use:

tar -xf archive.tar

the x option stands for extract

and to extract them to a specific directory, use:

tar -xf archive.tar -C directory

You can also just list the files contained in an archive:

32

 tar is often used to create a compressed archive,
gzipping the archive.

This is done using the z option:

tar -czf archive.tar.gz file1 file2

This is just like creating a tar archive, and then running
 gzip on it.

To unarchive a gzipped archive, you can use gunzip ,
or gzip -d , and then unarchive it, but tar -xf will
recognize it's a gzipped archive, and do it for you:

tar -xf archive.tar.gz

33

alias
It's common to always run a program with a set of
options you like using.

For example, take the ls command. By default it
prints very little information:

while using the -al option it will print something
more useful, including the file modification date, the
size, the owner, and the permissions, also listing
hidden files (files starting with a . :

You can create a new command, for example I like to
call it ll , that is an alias to ls -al .

You do it in this way:

34

alias ll='ls -al'

Once you do, you can call ll just like it was a
regular UNIX command:

Now calling alias without any option will list the
aliases defined:

The alias will work until the terminal session is closed.

To make it permanent, you need to add it to the shell
configuration, which could be ~/.bashrc or
 ~/.profile or ~/.bash_profile if you use the Bash
shell, depending on the use case.

Be careful with quotes if you have variables in the
command: using double quotes the variable is
resolved at definition time, using single quotes it's
resolved at invocation time. Those 2 are different:

35

alias lsthis="ls $PWD"
alias lscurrent='ls $PWD'

$PWD refers to the current folder the shell is into. If
you now navigate away to a new folder, lscurrent
lists the files in the new folder, lsthis still lists the
files in the folder you were when you defined the alias.

36

cat
Similar to tail in some way, we have cat . Except
 cat can also add content to a file, and this makes it
super powerful.

In its simplest usage, cat prints a file's content to the
standard output:

cat file

You can print the content of multiple files:

cat file1 file2

and using the output redirection operator > you can
concatenate the content of multiple files into a new
file:

cat file1 file2 > file3

Using >> you can append the content of multiple files
into a new file, creating it if it does not exist:

cat file1 file2 >> file3

When watching source code files it's great to see the
line numbers, and you can have cat print them using
the -n option:

cat -n file1

37

You can only add a number to non-blank lines using -
b , or you can also remove all the multiple empty lines
using -s .

 cat is often used in combination with the pipe
operator | to feed a file content as input to another
command: cat file1 | anothercommand .

38

less
The less command is one I use a lot. It shows you
the content stored inside a file, in a nice and
interactive UI.

Usage: less <filename> .

Once you are inside a less session, you can quit by
pressing q .

You can navigate the file contents using the up and
 down keys, or using the space bar and b to
navigate page by page. You can also jump to the end
of the file pressing G and jump back to the start
pressing g .

You can search contents inside the file by pressing /
and typing a word to search. This searches forward.
You can search backwards using the ? symbol and
typing a word.

39

This command just visualises the file's content. You
can directly open an editor by pressing v . It will use
the system editor, which in most cases is vim .

Pressing the F key enters follow mode, or watch
mode. When the file is changed by someone else, like
from another program, you get to see the changes
live. By default this is not happening, and you only see
the file version at the time you opened it. You need to
press ctrl-C to quit this mode. In this case the
behaviour is similar to running the tail -f

<filename> command.

You can open multiple files, and navigate through
them using :n (to go to the next file) and :p (to go
to the previous).

40

tail
The best use case of tail in my opinion is when called
with the -f option. It opens the file at the end, and
watches for file changes. Any time there is new
content in the file, it is printed in the window. This is
great for watching log files, for example:

tail -f /var/log/system.log

To exit, press ctrl-C .

You can print the last 10 lines in a file:

tail -n 10 <filename>

You can print the whole file content starting from a
specific line using + before the line number:

tail -n +10 <filename>

 tail can do much more and as always my advice is
to check man tail .

41

wc
The wc command gives us useful information about
a file or input it receives via pipes.

echo test >> test.txt
wc test.txt
1 1 5 test.txt

Example via pipes, we can count the output of running
the ls -al command:

ls -al | wc
6 47 284

The first column returned is the number of lines. The
second is the number of words. The third is the
number of bytes.

We can tell it to just count the lines:

wc -l test.txt

or just the words:

wc -w test.txt

or just the bytes:

wc -c test.txt

42

Bytes in ASCII charsets equate to characters, but with
non-ASCII charsets, the number of characters might
differ because some characters might take multiple
bytes, for example this happens in Unicode.

In this case the -m flag will help getting the correct
value:

wc -m test.txt

43

grep
The grep command is a very useful tool, that when
you master will help you tremendously in your day to
day.

If you're wondering, grep stands for global
regular expression print

You can use grep to search in files, or combine it
with pipes to filter the output of another command.

For example here's how we can find the occurences of
the document.getElementById line in the index.md file:

grep document.getElementById index.md

Using the -n option it will show the line numbers:

grep -n document.getElementById index.md

44

One very useful thing is to tell grep to print 2 lines
before, and 2 lines after the matched line, to give us
more context. That's done using the -C option, which
accepts a number of lines:

grep -nC 2 document.getElementById index.md

Search is case sensitive by default. Use the -i flag
to make it insensitive.

As mentioned, you can use grep to filter the output of
another command. We can replicate the same
functionality as above using:

less index.md | grep -n document.getElementById

The search string can be a regular expression, and
this makes grep very powerful.

45

Another thing you might find very useful is to invert the
result, excluding the lines that match a particular
string, using the -v option:

46

sort
Suppose you have a text file which contains the
names of dogs:

This list is unordered.

The sort command helps us sorting them by name:

Use the r option to reverse the order:

47

Sorting by default is case sensitive, and alphabetic.
Use the --ignore-case option to sort case insensitive,
and the -n option to sort using a numeric order.

If the file contains duplicate lines:

You can use the -u option to remove them:

48

 sort does not just works on files, as many UNIX
commands it also works with pipes, so you can use on
the output of another command, for example you can
order the files returned by ls with:

ls | sort

 sort is very powerful and has lots more options,
which you can explore calling man sort .

49

50

uniq
 uniq is a command useful to sort lines of text.

You can get those lines from a file, or using pipes from
the output of another command:

uniq dogs.txt

ls | uniq

You need to consider this key thing: uniq will only
detect adjacent duplicate lines.

This implies that you will most likely use it along with
 sort :

sort dogs.txt | uniq

The sort command has its own way to remove
duplicates with the -u (unique) option. But uniq has
more power.

By default it removes duplicate lines:

51

You can tell it to only display duplicate lines, for
example, with the -d option:

sort dogs.txt | uniq -d

52

You can use the -u option to only display non-
duplicate lines:

You can count the occurrences of each line with the -
c option:

53

Use the special combination:

sort dogs.txt | uniq -c | sort -nr

to then sort those lines by most frequent:

54

diff
 diff is a handy command. Suppose you have 2
files, which contain almost the same information, but
you can't find the difference between the two.

 diff will process the files and will tell you what's the
difference.

Suppose you have 2 files: dogs.txt and
 moredogs.txt . The difference is that moredogs.txt
contains one more dog name:

 diff dogs.txt moredogs.txt will tell you the second
file has one more line, line 3 with the line Vanille :

55

If you invert the order of the files, it will tell you that the
second file is missing line 3, whose content is
 Vanille :

Using the -y option will compare the 2 files line by
line:

The -u option however will be more familiar to you,
because that's the same used by the Git version
control system to display differences between
versions:

Comparing directories works in the same way. You
must use the -r option to compare recursively
(going into subdirectories):

56

In case you're interested in which files differ, rather
than the content, use the r and q options:

There are many more options you can explore in the
man page running man diff :

57

58

echo
The echo command does one simple job: it prints to
the output the argument passed to it.

This example:

echo "hello"

will print hello to the terminal.

We can append the output to a file:

echo "hello" >> output.txt

We can interpolate environment variables:

echo "The path variable is $PATH"

Beware that special characters need to be escaped
with a backslash \ . $ for example:

59

This is just the start. We can do some nice things
when it comes to interacting with the shell features.

We can echo the files in the current folder:

echo *

We can echo the files in the current folder that start
with the letter o :

echo o*

Any valid Bash (or any shell you are using) command
and feature can be used here.

You can print your home folder path:

echo ~

You can also execute commands, and print the result
to the standard output (or to file, as you saw):

echo $(ls -al)

60

Note that whitespace is not preserved by default. You
need to wrap the command in double quotes to do so:

You can generate a list of strings, for example ranges:

echo {1..5}

61

chown
Every file/directory in an Operating System like Linux
or macOS (and every UNIX systems in general) has
an owner.

The owner of a file can do everything with it. It can
decide the fate of that file.

The owner (and the root user) can change the
owner to another user, too, using the chown

command:

chown <owner> <file>

Like this:

chown flavio test.txt

For example if you have a file that's owned by root ,
you can't write to it as another user:

You can use chown to transfer the ownership to you:

62

It's rather common to have the need to change the
ownership of a directory, and recursively all the files
contained, plus all the subdirectories and the files
contained in them, too.

You can do so using the -R flag:

chown -R <owner> <file>

Files/directories don't just have an owner, they also
have a group. Through this command you can
change that simultaneously while you change the
owner:

chown <owner>:<group> <file>

Example:

chown flavio:users test.txt

You can also just change the group of a file using the
 chgrp command:

chgrp <group> <filename>

63

chmod
Every file in the Linux / macOS Operating Systems
(and UNIX systems in general) has 3 permissions:
Read, write, execute.

Go into a folder, and run the ls -al command.

The weird strings you see on each file line, like drwxr-
xr-x , define the permissions of the file or folder.

Let's dissect it.

The first letter indicates the type of file:

 - means it's a normal file
 d means it's a directory
 l means it's a link

Then you have 3 sets of values:

The first set represents the permissions of the
owner of the file
The second set represents the permissions of the
members of the group the file is associated to

64

The third set represents the permissions of the
everyone else

Those sets are composed by 3 values. rwx means
that specific persona has read, write and execution
access. Anything that is removed is swapped with a
 - , which lets you form various combinations of
values and relative permissions: rw- , r-- , r-x ,
and so on.

You can change the permissions given to a file using
the chmod command.

 chmod can be used in 2 ways. The first is using
symbolic arguments, the second is using numeric
arguments. Let's start with symbols first, which is more
intuitive.

You type chmod followed by a space, and a letter:

 a stands for all
 u stands for user
 g stands for group
 o stands for others

Then you type either + or - to add a permission, or
to remove it. Then you enter one or more permissions
symbols (r , w , x).

All followed by the file or folder name.

Here are some examples:

chmod a+r filename #everyone can now read
chmod a+rw filename #everyone can now read and write
chmod o-rwx filename #others (not the owner, not in

65

You can apply the same permissions to multiple
personas by adding multiple letters before the + / - :

In case you are editing a folder, you can apply the
permissions to every file contained in that folder using
the -r (recursive) flag.

Numeric arguments are faster but I find them hard to
remember when you are not using them day to day.
You use a digit that represents the permissions of the
persona. This number value can be a maximum of 7,
and it's calculated in this way:

 1 if has execution permission
 2 if has write permission
 4 if has read permission

This gives us 4 combinations:

 0 no permissions
 1 can execute
 2 can write
 3 can write, execute
 4 can read
 5 can read, execute
 6 can read, write
 7 can read, write and execute

We use them in pairs of 3, to set the permissions of all
the 3 groups altogether:

chmod og-r filename #other and group can't read any

66

chmod 777 filename
chmod 755 filename
chmod 644 filename

67

umask
When you create a file, you don't have to decide
permissions up front. Permissions have defaults.

Those defaults can be controlled and modified using
the umask command.

Typing umask with no arguments will show you the
current umask, in this case 0022 :

What does 0022 mean? That's an octal value that
represent the permissions.

Another common value is 0002 .

Use umask -S to see a human-readable notation:

In this case, the user (u), owner of the file, has read,
write and execution permissions on files.

68

Other users belonging to the same group (g) have
read and execution permission, same as all the other
users (o).

In the numeric notation, we typically change the last 3
digits.

Here's a list that gives a meaning to the number:

 0 read, write, execute
 1 read and write
 2 read and execute
 3 read only
 4 write and execute
 5 write only
 6 execute only
 7 no permissions

Note that this numeric notation differs from the one we
use in chmod .

We can set a new value for the mask setting the value
in numeric format:

umask 002

or you can change a specific role's permission:

umask g+r

69

du
The du command will calculate the size of a directory
as a whole:

du

The 32 number here is a value expressed in bytes.

Running du * will calculate the size of each file
individually:

You can set du to display values in MegaBytes using
 du -m , and GigaBytes using du -g .

70

The -h option will show a human-readable notation
for sizes, adapting to the size:

Adding the -a option will print the size of each file in
the directories, too:

A handy thing is to sort the directories by size:

du -h <directory> | sort -nr

and then piping to head to only get the first 10
results:

71

72

df
The df command is used to get disk usage
information.

Its basic form will print information about the volumes
mounted:

Using the -h option (df -h) will show those values
in a human-readable format:

You can also specify a file or directory name to get
information about the specific volume it lives on:

73

basename
Suppose you have a path to a file, for example
 /Users/flavio/test.txt .

Running

basename /Users/flavio/test.txt

will return the test.txt string:

If you run basename on a path string that points to a
directory, you will get the last segment of the path. In
this example, /Users/flavio is a directory:

74

dirname
Suppose you have a path to a file, for example
 /Users/flavio/test.txt .

Running

dirname /Users/flavio/test.txt

will return the /Users/flavio string:

75

ps
Your computer is running, at all times, tons of different
processes.

You can inspect them all using the ps command:

This is the list of user-initiated processes currently
running in the current session.

Here I have a few fish shell instances, mostly
opened by VS Code inside the editor, and an
instances of Hugo running the development preview of
a site.

Those are just the commands assigned to the current
user. To list all processes we need to pass some
options to ps .

The most common I use is ps ax :

76

The a option is used to also list other users
processes, not just our own. x shows processes
not linked to any terminal (not initiated by users
through a terminal).

As you can see, the longer commands are cut. Use
the command ps axww to continue the command
listing on a new line instead of cutting it:

We need to specify w 2 times to apply this
setting, it's not a typo.

77

You can search for a specific process combining
 grep with a pipe, like this:

ps axww | grep "Visual Studio Code"

The columns returned by ps represent some key
information.

The first information is PID , the process ID. This is
key when you want to reference this process in
another command, for example to kill it.

Then we have TT that tells us the terminal id used.

Then STAT tells us the state of the process:

 I a process that is idle (sleeping for longer than
about 20 seconds) R a runnable process S a
process that is sleeping for less than about 20
seconds T a stopped process U a process in
uninterruptible wait Z a dead process (a zombie)

If you have more than one letter, the second
represents further information, which can be very
technical.

78

It's common to have + which indicates the process is
in the foreground in its terminal. s means the
process is a session leader.

 TIME tells us how long the process has been running.

79

top
A quick guide to the top command, used to list the
processes running in real time

The top command is used to display dynamic real-
time information about running processes in the
system.

It's really handy to understand what is going on.

Its usage is simple, you just type top , and the
terminal will be fully immersed in this new view:

The process is long-running. To quit, you can type the
 q letter or ctrl-C .

There's a lot of information being given to us: the
number of processes, how many are running or
sleeping, the system load, the CPU usage, and a lot
more.

80

Below, the list of processes taking the most memory
and CPU is constantly updated.

By default, as you can see from the %CPU column
highlighted, they are sorted by the CPU used.

You can add a flag to sort processes by memory
utilized:

top -o mem

81

kill
Linux processes can receive signals and react to
them.

That's one way we can interact with running programs.

The kill program can send a variety of signals to a
program.

It's not just used to terminate a program, like the name
would suggest, but that's its main job.

We use it in this way:

kill <PID>

By default, this sends the TERM signal to the process
id specified.

We can use flags to send other signals, including:

kill -HUP <PID>
kill -INT <PID>
kill -KILL <PID>
kill -TERM <PID>
kill -CONT <PID>
kill -STOP <PID>

 HUP means hang up. It's sent automatically when a
terminal window that started a process is closed
before terminating the process.

82

 INT means interrupt, and it sends the same signal
used when we press ctrl-C in the terminal, which
usually terminates the process.

 KILL is not sent to the process, but to the operating
system kernel, which immediately stops and
terminates the process.

 TERM means terminate. The process will receive it
and terminate itself. It's the default signal sent by
 kill .

 CONT means continue. It can be used to resume a
stopped process.

 STOP is not sent to the process, but to the operating
system kernel, which immediately stops (but does not
terminate) the process.

You might see numbers used instead, like kill -1
<PID> . In this case,

 1 corresponds to HUP . 2 corresponds to INT . 9
corresponds to KILL . 15 corresponds to TERM .
 18 corresponds to CONT . 15 corresponds to
 STOP .

83

killall
Similar to the kill command, killall instead of
sending a signal to a specific process id will send the
signal to multiple processes at once.

This is the syntax:

killall <name>

where name is the name of a program. For example
you can have multiple instances of the top program
running, and killall top will terminate them all.

You can specify the signal, like with kill (and check
the kill tutorial to read more about the specific
kinds of signals we can send), for example:

killall -HUP top

84

jobs
When we run a command in Linux / macOS, we can
set it to run in the background using the & symbol
after the command. For example we can run top in
the background:

top &

This is very handy for long-running programs.

We can get back to that program using the fg

command. This works fine if we just have one job in
the background, otherwise we need to use the job
number: fg 1 , fg 2 and so on. To get the job
number, we use the jobs command.

Say we run top & and then top -o mem & , so we
have 2 top instances running. jobs will tell us this:

Now we can switch back to one of those using fg
<jobid> . To stop the program again we can hit cmd-
Z .

Running jobs -l will also print the process id of each
job.

85

bg
When a command is running you can suspend it using
 ctrl-Z .

The command will immediately stop, and you get back
to the shell terminal.

You can resume the execution of the command in the
background, so it will keep running but it will not
prevent you from doing other work in the terminal.

In this example I have 2 commands stopped:

I can run bg 1 to resume in the background the
execution of the job #1.

I could have also said bg without any option, as the
default is to pick the job #1 in the list.

86

fg
When a command is running in the background,
because you started it with & at the end (example:
 top & or because you put it in the background with
the bg command, you can put it to the foreground
using fg .

Running

fg

will resume to the foreground the last job that was
suspended.

You can also specify which job you want to resume to
the foreground passing the job number, which you can
get using the jobs command.

Running fg 2 will resume job #2:

87

88

type
A command can be one of those 4 types:

an executable
a shell built-in program
a shell function
an alias

The type command can help figure out this, in case
we want to know or we're just curious. It will tell you
how the command will be interpreted.

The output will depend on the shell used. This is Bash:

This is Zsh:

89

This is Fish:

90

One of the most interesting things here is that for
aliases it will tell you what is aliasing to. You can see
the ll alias, in the case of Bash and Zsh, but Fish
provides it by default, so it will tell you it's a built-in
shell function.

91

which
Suppose you have a command you can execute,
because it's in the shell path, but you want to know
where it is located.

You can do so using which . The command will return
the path to the command specified:

 which will only work for executables stored on disk,
not aliases or built-in shell functions.

92

nohup
Sometimes you have to run a long-lived process on a
remote machine, and then you need to disconnect.

Or you simply want to prevent the command to be
halted if there's any network issue between you and
the server.

The way to make a command run even after you log
out or close the session to a server is to use the
 nohup command.

Use nohup <command> to let the process continue
working even after you log out.

93

xargs
The xargs command is used in a UNIX shell to
convert input from standard input into arguments to a
command.

In other words, through the use of xargs the output
of a command is used as the input of another
command.

Here's the syntax you will use:

command1 | xargs command2

We use a pipe (|) to pass the output to xargs . That
will take care of running the command2 command,
using the output of command1 as its argument(s).

Let's do a simple example. You want to remove some
specific files from a directory. Those files are listed
inside a text file.

We have 3 files: file1 , file2 , file3 .

In todelete.txt we have a list of files we want to
delete, in this example file1 and file3 :

94

We will channel the output of cat todelete.txt to the
 rm command, through xargs .

In this way:

cat todelete.txt | xargs rm

That's the result, the files we listed are now deleted:

The way it works is that xargs will run rm 2 times,
one for each line returned by cat .

This is the simplest usage of xargs . There are
several options we can use.

One of the most useful in my opinion, especially when
starting to learn xargs , is -p . Using this option will
make xargs print a confirmation prompt with the
action it's going to take:

95

The -n option lets you tell xargs to perform one
iteration at a time, so you can individually confirm
them with -p . Here we tell xargs to perform one
iteration at a time with -n1 :

The -I option is another widely used one. It allows
you to get the output into a placeholder, and then you
can do various things.

One of them is to run multiple commands:

You can swap the % symbol I used above with
anything else, it's a variable

command1 | xargs -I % /bin/bash -c 'command2 %; comm

96

vim
 vim is a very popular file editor, especially among
programmers. It's actively developed and frequently
updated, and there's a very big community around it.
There's even a Vim conference!

 vi in modern systems is just an alias to vim , which
means vi i m proved.

You start it by running vi on the command line.

You can specify a filename at invocation time to edit
that specific file:

vi test.txt

97

You have to know that Vim has 2 main modes:

command (or normal) mode
insert mode

When you start the editor, you are in command mode.
You can't enter text like you expect from a GUI-based
editor. You have to enter insert mode. You can do this
by pressing the i key. Once you do so, the --
INSERT -- word appear at the bottom of the editor:

Now you can start typing and filling the screen with the
file contents:

98

You can move around the file with the arrow keys, or
using the h - j - k - l keys. h-l for left-right,
 j-k for down-up.

Once you are done editing you can press the esc
key to exit insert mode, and go back to command
mode.

At this point you can navigate the file, but you can't
add content to it (and be careful which keys you press
as they might be commands).

One thing you might want to do now is saving the file.
You can do so by pressing : (colon), then w .

99

You can save and quit pressing : then w and q :
 :wq

You can quit without saving, pressing : then q
and ! : :q!

You can undo and edit by going to command mode
and pressing u . You can redo (cancel an undo) by
pressing ctrl-r .

Those are the basics of working with Vim. From here
starts a rabbit hole we can't go into in this little
introduction.

I will only mention those commands that will get you
started editing with Vim:

pressing the x key deletes the character
currently highlighted
pressing A goes at the end of the currently
selected line
press 0 to go to the start of the line
go to the first character of a word and press d
followed by w to delete that word. If you follow it
with e instead of w , the white space before the
next word is preserved
use a number between d and w to delete more
than 1 word, for example use d3w to delete 3
words forward
press d followed by d to delete a whole entire
line. Press d followed by $ to delete the entire
line from where the cursor is, until the end

To find out more about Vim I can recommend the Vim
FAQ and especially running the vimtutor command,
which should already be installed in your system and

100

will greatly help you start your vim explorations.

101

emacs
 emacs is an awesome editor and it's historically
regarded as the editor for UNIX systems. Famously
 vi vs emacs flame wars and heated discussions
caused many unproductive hours for developers
around the world.

 emacs is very powerful. Some people use it all day
long as a kind of operating system
(https://news.ycombinator.com/item?id=19127258).
We'll just talk about the basics here.

You can open a new emacs session simply by
invoking emacs :

102

macOS users, stop a second now. If you are on
Linux there are no problems, but macOS does not
ship applications using GPLv3, and every built-in
UNIX command that has been updated to GPLv3
has not been updated. While there is a little
problem with the commands I listed up to now, in
this case using an emacs version from 2007 is not
exactly the same as using a version with 12 years
of improvements and change. This is not a
problem with Vim, which is up to date. To fix this,
run brew install emacs and running emacs will
use the new version from Homebrew (make sure
you have Homebrew installed)

You can also edit an existing file calling emacs

<filename> :

You can start editing and once you are done, press
 ctrl-x followed by ctrl-w . You confirm the folder:

103

and Emacs tell you the file exists, asking you if it
should overwrite it:

Answer y , and you get a confirmation of success:

104

You can exit Emacs pressing ctrl-x followed by
 ctrl-c . Or ctrl-x followed by c (keep ctrl
pressed).

There is a lot to know about Emacs. More than I am
able to write in this little introduction. I encourage you
to open Emacs and press ctrl-h r to open the
built-in manual and ctrl-h t to open the official
tutorial.

105

nano
 nano is a beginner friendly editor.

Run it using nano <filename> .

You can directly type characters into the file without
worrying about modes.

You can quit without editing using ctrl-X . If you
edited the file buffer, the editor will ask you for
confirmation and you can save the edits, or discard
them. The help at the bottom shows you the keyboard
commands that let you work with the file:

 pico is more or less the same, although nano is the
GNU version of pico which at some point in history
was not open source and the nano clone was made
to satisfy the GNU operating system license
requirements.

106

whoami
Type whoami to print the user name currently logged
in to the terminal session:

Note: this is different from the who am i

command, which prints more information

107

who
The who command displays the users logged in to
the system.

Unless you're using a server multiple people have
access to, chances are you will be the only user
logged in, multiple times:

Why multiple times? Because each shell opened will
count as an access.

You can see the name of the terminal used, and the
time/day the session was started.

The -aH flags will tell who to display more
information, including the idle time and the process ID
of the terminal:

108

The special who am i command will list the current
terminal session details:

109

su
While you're logged in to the terminal shell with one
user, you might have the need to switch to another
user.

For example you're logged in as root to perform some
maintenance, but then you want to switch to a user
account.

You can do so with the su command:

su <username>

For example: su flavio .

If you're logged in as a user, running su without
anything else will prompt to enter the root user
password, as that's the default behavior.

 su will start a new shell as another user.

When you're done, typing exit in the shell will close
that shell, and will return back to the current user's
shell.

110

sudo
 sudo is commonly used to run a command as root.

You must be enabled to use sudo , and once you do,
you can run commands as root by entering your user's
password (not the root user password).

The permissions are highly configurable, which is
great especially in a multi-user server environment,
and some users can be granted access to running
specific commands through sudo .

For example you can edit a system configuration file:

sudo nano /etc/hosts

which would otherwise fail to save since you don't
have the permissions for it.

You can run sudo -i to start a shell as root:

You can use sudo to run commands as any user.
 root is the default, but use the -u option to specify
another user:

111

sudo -u flavio ls /Users/flavio

112

passwd
Users in Linux have a password assigned. You can
change the password using the passwd command.

There are two situations here.

The first is when you want to change your password.
In this case you type:

passwd

and an interactive prompt will ask you for the old
password, then it will ask you for the new one:

When you're root (or have superuser privileges) you
can set the username of which you want to change the
password:

passwd <username> <new password>

In this case you don't need to enter the old one.

113

ping
The ping command pings a specific network host, on
the local network or on the Internet.

You use it with the syntax ping <host> where
 <host> could be a domain name, or an IP address.

Here's an example pinging google.com :

The commands sends a request to the server, and the
server returns a response.

 ping keep sending the request every second, by
default, and will keep running until you stop it with
 ctrl-C , unless you pass the number of times you
want to try with the -c option: ping -c 2 google.com .

Once ping is stopped, it will print some statistics
about the results: the percentage of packages lost,
and statistics about the network performance.

As you can see the screen prints the host IP address,
and the time that it took to get the response back.

114

Not all servers support pinging, in case the requests
times out:

Sometimes this is done on purpose, to "hide" the
server, or just to reduce the load. The ping packets
can also be filtered by firewalls.

 ping works using the ICMP protocol (Internet
Control Message Protocol), a network layer protocol
just like TCP or UDP.

The request sends a packet to the server with the
 ECHO_REQUEST message, and the server returns a
 ECHO_REPLY message. I won't go into details, but this
is the basic concept.

Pinging a host is useful to know if the host is
reachable (supposing it implements ping), and how
distant it is in terms of how long it takes to get back to
you. Usually the nearest the server is geographically,
the less time it will take to return back to you, for
simple physical laws that cause a longer distance to
introduce more delay in the cables.

115

traceroute
When you try to reach a host on the Internet, you go
through your home router, then you reach your ISP
network, which in turn goes through its own upstream
network router, and so on, until you finally reach the
host.

Have you ever wanted to know what are the steps that
your packets go through to do that?

The traceroute command is made for this.

You invoke

traceroute <host>

and it will (slowly) gather all the information while the
packet travels.

In this example I tried reaching for my blog with
 traceroute flaviocopes.com :

116

Not every router travelled returns us information. In
this case, traceroute prints * * * . Otherwise, we
can see the hostname, the IP address, and some
performance indicator.

For every router we can see 3 samples, which means
traceroute tries by default 3 times to get you a good
indication of the time needed to reach it. This is why it
takes this long to execute traceroute compared to
simply doing a ping to that host.

You can customize this number with the -q option:

traceroute -q 1 flaviocopes.com

117

clear
Type clear to clear all the previous commands that
were ran in the current terminal.

The screen will clear and you will just see the prompt
at the top:

Note: this command has a handy shortcut: ctrl-
L

Once you do that, you will lose access to scrolling to
see the output of the previous commands entered.

So you might want to use clear -x instead, which
still clears the screen, but lets you go back to see the
previous work by scrolling up.

118

history
Every time we run a command, that's memorized in
the history.

You can display all the history using:

history

This shows the history with numbers:

You can use the syntax !<command number> to repeat
a command stored in the history, in the above
example typing !121 will repeat the ls -al | wc -l
command.

Typically the last 500 commands are stored in the
history.

You can combine this with grep to find a command
you ran:

history | grep docker

119

To clear the history, run history -c

120

export
The export command is used to export variables to
child processes.

What does this mean?

Suppose you have a variable TEST defined in this
way:

TEST="test"

You can print its value using echo $TEST :

But if you try defining a Bash script in a file script.sh
with the above command:

121

Then you set chmod u+x script.sh and you execute
this script with ./script.sh , the echo $TEST line will
print nothing!

This is because in Bash the TEST variable was
defined local to the shell. When executing a shell
script or another command, a subshell is launched to
execute it, which does not contain the current shell
local variables.

To make the variable available there we need to define
 TEST not in this way:

TEST="test"

but in this way:

export TEST="test"

Try that, and running ./script.sh now should print
"test":

Sometimes you need to append something to a
variable. It's often done with the PATH variable. You
use this syntax:

export PATH=$PATH:/new/path

122

It's common to use export when you create new
variables in this way, but also when you create
variables in the .bash_profile or .bashrc

configuration files with Bash, or in .zshenv with Zsh.

To remove a variable, use the -n option:

export -n TEST

Calling export without any option will list all the
exported variables.

123

crontab
Cron jobs are jobs that are scheduled to run at specific
intervals. You might have a command perform
something every hour, or every day, or every 2 weeks.
Or on weekends. They are very powerful, especially
on servers to perform maintenance and automations.

The crontab command is the entry point to work with
cron jobs.

The first thing you can do is to explore which cron jobs
are defined by you:

crontab -l

You might have none, like me:

Run

crontab -e

to edit the cron jobs, and add new ones.

124

By default this opens with the default editor, which is
usually vim . I like nano more, you can use this line
to use a different editor:

EDITOR=nano crontab -e

Now you can add one line for each cron job.

The syntax to define cron jobs is kind of scary. This is
why I usually use a website to help me generate it
without errors: https://crontab-generator.org/

You pick a time interval for the cron job, and you type
the command to execute.

125

I chose to run a script located in
 /Users/flavio/test.sh every 12 hours. This is the
crontab line I need to run:

I run crontab -e :

EDITOR=nano crontab -e

and I add that line, then I press ctrl-X and press y
to save.

If all goes well, the cron job is set up:

Once this is done, you can see the list of active cron
jobs by running:

crontab -l

* */12 * * * /Users/flavio/test.sh >/dev/null 2>&1

126

You can remove a cron job running crontab -e again,
removing the line and exiting the editor:

127

uname
Calling uname without any options will return the
Operating System codename:

The m option shows the hardware name (x86_64 in
this example) and the p option prints the processor
architecture name (i386 in this example):

The s option prints the Operating System name. r
prints the release, v prints the version:

128

The n option prints the node network name:

The a option prints all the information available:

129

On macOS you can also use the sw_vers command
to print more information about the macOS Operating
System. Note that this differs from the Darwin (the
Kernel) version, which above is 19.6.0 .

Darwin is the name of the kernel of macOS. The
kernel is the "core" of the Operating System, while
the Operating System as a whole is called
macOS. In Linux, Linux is the kernel, GNU/Linux
would be the Operating System name, although
we all refer to it as "Linux"

130

env
The env command can be used to pass environment
variables without setting them on the outer
environment (the current shell).

Suppose you want to run a Node.js app and set the
 USER variable to it.

You can run

env USER=flavio node app.js

and the USER environment variable will be accessible
from the Node.js app via the Node process.env

interface.

You can also run the command clearing all the
environment variables already set, using the -i

option:

env -i node app.js

In this case you will get an error saying env: node: No
such file or directory because the node command
is not reachable, as the PATH variable used by the
shell to look up commands in the common paths is
unset.

So you need to pass the full path to the node

program:

env -i /usr/local/bin/node app.js

131

Try with a simple app.js file with this content:

console.log(process.env.NAME)
console.log(process.env.PATH)

You will see the output being

undefined
undefined

You can pass an env variable:

env -i NAME=flavio node app.js

and the output will be

flavio
undefined

Removing the -i option will make PATH available
again inside the program:

The env command can also be used to print out all
the environment variables, if ran with no options:

env

132

it will return a list of the environment variables set, for
example:

You can also make a variable inaccessible inside the
program you run, using the -u option, for example
this code removes the HOME variable from the
command environment:

env -u HOME node app.js

HOME=/Users/flavio
LOGNAME=flavio
PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/L
PWD=/Users/flavio
SHELL=/usr/local/bin/fish

133

printenv
A quick guide to the printenv command, used to
print the values of environment variables

In any shell there are a good number of environment
variables, set either by the system, or by your own
shell scripts and configuration.

You can print them all to the terminal using the
 printenv command. The output will be something
like this:

with a few more lines, usually.

You can append a variable name as a parameter, to
only show that variable value:

printenv PATH

HOME=/Users/flavio
LOGNAME=flavio
PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/L
PWD=/Users/flavio
SHELL=/usr/local/bin/fish

134

Conclusion
Thanks a lot for reading this book.

I hope it will inspire you to know more about Linux and
its capabilities.

To learn more, check out my blog flaviocopes.com.

Send any feedback, errata or opinions at
hey@flaviocopes.com

	Preface
	Introduction to Linux and shells
	man
	ls
	cd
	pwd
	mkdir
	rmdir
	mv
	cp
	open
	touch
	find
	ln
	gzip
	gunzip
	tar
	alias
	cat
	less
	tail
	wc
	grep
	sort
	uniq
	diff
	echo
	chown
	chmod
	umask
	du
	df
	basename
	dirname
	ps
	top
	kill
	killall
	jobs
	bg
	fg
	type
	which
	nohup
	xargs
	vim
	emacs
	nano
	whoami
	who
	su
	sudo
	passwd
	ping
	traceroute
	clear
	history
	export
	crontab
	uname
	env
	printenv
	Conclusion

